Texas A&M University
Core Curriculum
Initial Request for a Course Addition to the Fall 2014 Core Curriculum

Foundational Component Area: Mathematics

In the box below, describe how this course meets the Foundational Component Area description for Mathematics. Courses in this category focus on quantitative literacy in logic, patterns, and relationships. Courses involve the understanding of key mathematical concepts, and the application of appropriate quantitative tools to everyday experience.

The proposed course must contain all elements of the Foundational Component Area. How does the proposed course specifically address the Foundational Component Area definition above?

This course focuses on quantitative literacy in mathematics along with real world applications to physics, related rate problems, and optimization. Upon successful completion of this course, students will be able to:

- Understand vectors and vector functions, both graphically and quantitatively, and apply them to real world situations involving velocity, forces, and work.
- Construct vector and parametric equations of lines and understand vector functions and their relationship to parametric equations.
- Understand the concept of a limit graphically, numerically, and algebraically, and apply the relationship between limits, continuity, and differentiability in determining where a function is continuous and/or differentiable.
- Conceptually understand the precise definition of a limit involving epsilon and delta.
- Define the limit definition of the derivative and calculate derivatives using the limit definition, differentiation formulas, the chain rule, and implicit differentiation, with applications to tangent line and velocity problems.
- Calculate limits and derivatives of vector functions with applications to physics such as computing velocity and acceleration vectors.
- Identify exponential, logarithmic, and inverse trigonometric functions, and compute limits and derivatives involving these classes of functions.
- Apply the derivative to mathematically model velocity and acceleration as well as real world related rate applications, such as calculating the rate at which the distance between two moving objects is changing or the rate at which the volume of a cone being filled with water is changing.
- Approximate functions and function values using the derivative and the tangent line.
- Identify and understand indeterminate forms and apply the derivative to calculate limits using L’Hospital’s Rule.
- Understand and apply the Intermediate Value Theorem and the Mean Value Theorem, and be able to logically determine when these theorems can be used.
- Use calculus and logic to sketch graphs of functions and analyze their properties, including where a function is increasing/decreasing and in describing the concavity of the function.
- Determine the maximum/minimum values of functions, including applied optimization problems.
- Compute antiderivatives and understand the concept of integration as it relates to area and Riemann sums.
- Articulate the relationship between derivatives and integrals using the Fundamental Theorem of Calculus, and evaluate definite integrals using the Fundamental Theorem of Calculus.
- Explain and/or prove various formulas or theorems used in the course.

Core Objectives

Describe how the proposed course develops the required core objectives below by indicating how each learning objective will be addressed, what specific strategies will be used for each objective and how student learning of each objective will be evaluated.
Texas A&M University

Core Curriculum

Initial Request for a Course Addition to the Fall 2014 Core Curriculum

The proposed course is required to contain each element of the Core Objective.

Critical Thinking (to include creative thinking, innovation, inquiry, and analysis, evaluation and synthesis of information):

The following critical thinking skills will be assessed on quizzes, homework, and exams.
- Students will think critically about limits in determining how the limit conceptually relates to the behavior of the function.
- Students will analyze the limit of a function at a point using the precise definition of the limit.
- Students will think critically about continuity and differentiability to justify whether a function is continuous and or differentiable at a point.
- Students will evaluate the proper technique to use when computing limits and derivatives of functions.
- Students will synthesize data determined from the first and second derivatives to determine the properties and shape of a function.
- Students will use inquiry to determine on what intervals a function is increasing/decreasing and to determine the intervals of concavity of the function by analyzing the signs of the first and second derivatives.
- Students will innovatively think about how to solve related rate word problems and optimization problems.
- Students will analyze functions using continuity and the derivative in determining the maximum and minimum values of the function, and if they exist.
- Students will develop a critical understanding of the relationship between the derivative and the integral using the Fundamental Theorem of Calculus.

Communication (to include effective development, interpretation and expression of ideas through written, oral and visual communication):

The following communication skills will be assessed in class, on quizzes, homework, and exams.
- Students will recognize and construct graphs of basic functions, including polynomials, exponential functions, logarithmic functions, and trigonometric functions.
- Students will justify solutions to optimization problems in writing.
- Students will interpret information from the derivatives of a function in order to develop a visual sketch of the graph of the function and to communicate in writing the properties of the function.
- Students will identify points of discontinuity and non-differentiability by examining the graphs of functions.
- Students will express mathematical concepts, such as the definition of the derivative, both abstractly with equations and in writing solutions to problems.
- Students will develop solutions to problems that involve the use of theorems, such as the Squeeze Theorem, the Intermediate Value Theorem, and the Mean Value Theorem.
- Students will use graphs of functions to determine the value of definite integrals as they relate to area.
- Students will be able to explain and/or prove various formulas or theorems used in the course.
- Students will communicate orally by answering questions in class and participating in any group discussion.

Empirical and Quantitative Skills (to include the manipulation and analysis of numerical data or observable facts resulting in informed conclusions):

The following empirical and quantitative skills will be assessed on quizzes, homework, and exams.
- Students will analyze limits numerically to determine the sign of the infinite limit.
- Students will analyze numerical data in determining the signs of the first and second derivative in order to make conclusions on the shape of the graph.
- Students will compute derivatives and interpret the results as they relate to tangent line, velocity, and other rate of change problems.
- Students will numerically approximate the values of a function by using the tangent line approximation.
- Students will calculate antiderivatives of functions and use initial data to determine any unknown constants.
Initial Request for a Course Addition to the Fall 2014 Core Curriculum

- Students will make conclusions involving maximum and minimum values of functions (both local and absolute) based on information from the derivative.
- Students will manipulate given information to develop a function to be used in optimization problems and then apply calculus to find and interpret the optimal solution.
- Students will approximate the value of a definite integral numerically using Riemann sums.
- Students will compute definite integrals and interpret the results as they relate to area under a curve.
- Students will manipulate given information to create a related rate model involving known quantities, and then apply calculus to solve for an unknown rate of change.

Please be aware that instructors should be prepared to submit samples/examples of student work as part of the future course recertification process.